có tiêu điểm . Tìm điểm trên trong các trường hợp sau:
a) Điểm có hoành độ là .
b) Khoảng cách hai điểm bằng .
c) Tổng khoảng cách từ đến hai đường tiệm cận bằng ."> có tiêu điểm . Tìm điểm trên trong các trường hợp sau:
a) Điểm có hoành độ là .
b) Khoảng cách hai điểm bằng .
c) Tổng khoảng cách từ đến hai đường tiệm cận bằng ."> Cho hypebol $\left( H \right):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{6} = 1$ có tiêu điểm ${F1}$ và ${F2}$. Tìm điểm $M$ trê?

Cho hypebol có tiêu điểm . Tìm điểm trên trong các trường hợp sau:
a) Điểm có hoành độ là .
b) Khoảng cách hai điểm bằng .
c) Tổng khoảng cách từ đến hai đường tiệm cận bằng .

Đáp án đúng:
Giả sử suy ra .
a) Ta có suy ra .
Vậy điểm cần tìm là ; .
b) Ta có nên (loại) hoặc (nhận).
Suy ra .
Vậy điểm cần tìm là .
c) Phương trình hai tiệm cận là , .
Tổng khoảng cách từ đến hai đường tiệm cận bằng nên .
Mặt khác nên ta có .
Vậy điểm cần tìm là , , .
Số bình luận về đáp án: 0