Gọi S là tập tất cả các số tự nhiên có ba chữ số đôi một khác nhau được lập từ các chữ số 0,1,2,3,4,5,6. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chia hết cho 6.

Đáp án đúng: A
Chọn A
Gọi số tự nhiên có ba chữ số đôi một khác nhau thỏa mãn bài toán có dạng ()
Theo bài ra: Vì chia hết cho 6 nên phải là số chẵn.
Như vậy, c có 4 cách chọn.
Trường hợp 1: c = 0
Khi đó, (a;b) là hoán vị của bộ số (1;2), (1;5), (2;4), (3;6), (4;5)
Mỗi trường hợp có 2 cách sắp xếp
Như vậy có 5.2 = 10 số tự nhiên thỏa mãn bài toán trong trường hợp 1.
Trường hợp 2: c = 2
Khi đó, (a;b) là hoán vị của bộ số (0;1), (0;4), (1;3), (1;6), (3;4), (4;6)
Mỗi trường hợp có chữ số 0 có 1 cách sắp xếp
Mỗi trường hợp không có chữ số 0 có 2 cách sắp xếp
Như vậy, có 2 + 4.2 = 10 số tự nhiên thỏa mãn bài toán trong trường hợp 2.
Trường hợp 3: c = 4
Khi đó, (a;b) là hoán vị của bộ số (0;2), (0;5), (2;3), (2;6), (3;5), (5;6)
Làm tương tự trường hợp 2, có 2 + 4.2 = 10 số tự nhiên thỏa mãn bài toán trong trường hợp 3.
Trường hợp 4: c = 6
Khi đó, (a;b) là hoán vị của bộ số (0;3), (1;2), (1;5), (2;4), (4;5)
Làm tương tự trường hợp 2, trường hợp này có 1 + 4.2 = 9 số tự nhiên thỏa mãn bài toán.
Số phần tử của không gian mẫu:
Xác suất để chọn được số chia hết cho 6:
Số bình luận về đáp án: 1